2019 Mathematics

National 5 - Paper 1 (Non-calculator)

Finalised Marking Instructions

©Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the
 doubt and all marks awarded.

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet 6 \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: $\quad{ }^{5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.		\bullet^{1} substitute into $5 x^{3}$ $\bullet^{1} 5(-2)^{3}$ or equivalent \bullet^{2} evaluate $5 x^{3}$ $\bullet^{2}-40$		

Notes:

1. Correct answer without working award $2 / 2$
2. Accept 5×-2^{3} for \bullet^{1}
3. For subsequent incorrect working, \bullet^{2} is not available

Commonly observed responses:

1. $-1000\left[(5 \times-2)^{3}\right]$ (no working necessary) award $1 / 2 \times \checkmark$
2. (a) $-2=5 \times(-2)^{3} \rightarrow-2=-40$
award 2/2
(b) $-2=5 \times(-2)^{3} \rightarrow-2=-40 \rightarrow x=-38$
award $1 / 2 \checkmark x$
3. $5 \times 2^{3}=40$
award 0/2
4. $5 \times(-2)^{2}=20$
award 0/2

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 2. | | $\bullet 1$ start to multiply fractions
 \bullet^{2}consistent answer in simplest
 form $\bullet^{2} \frac{3}{8} \times \frac{12}{7}$ | 2 | |

Notes:

1. Correct answer without working award 0/2
2. \bullet^{2} is only available where simplifying is required
3. For subsequent incorrect working, $\mathbf{\bullet}^{2}$ is not available eg $\frac{3}{8} \times \frac{12}{7}=\frac{9}{14}=1 \frac{5}{14}$ award 1/2 $\checkmark x$

Commonly observed responses:

1. $\frac{3}{8} \times \frac{12}{7}=\frac{36}{56}$
award $1 / 2 \checkmark x$
2. (a) $\frac{3}{8} \times \frac{7}{12}=\frac{7}{32}$
award $1 / 2 \times \checkmark$
(b) $\frac{3}{8} \times \frac{7}{12}=\frac{21}{96}$
award 0/2
3.

.
-

Notes:

1. Correct answer without working
2. BEWARE

$$
\frac{240}{360} \pi r^{2}=\frac{240}{360} \times 3 \cdot 14 \times 30^{2}\left(=\frac{240}{360} \times 3 \cdot 14 \times 30 \times 2\right)=125 \cdot 6(\mathrm{~cm})
$$

3. $\frac{120}{360} \times 3 \cdot 14 \times 60=62 \cdot 8(\mathrm{~cm})$
award 2/3 $x \checkmark \checkmark$

Commonly observed responses:

1. $\frac{240}{360} \times 3 \cdot 14 \times 30=62 \cdot 8(\mathrm{~cm})$
award 2/3 $\checkmark \times \checkmark$
2. $\frac{360}{240} \times 3 \cdot 14 \times 60=282 \cdot 6(\mathrm{~cm})$
award 2/3 $\times \checkmark \checkmark$
3. $\frac{240}{360} \times \pi \times 60$ only
4. $3 \cdot 14 \times 60=188 \cdot 4(\mathrm{~cm})$
award 0/3
5. $\frac{240}{360} \pi r^{2}=\frac{240}{360} \times 3.14 \times 30^{2}=1884(\mathrm{~cm})$
award 2/3 $\checkmark \times \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	- 1 state median - ${ }^{2}$ find quartiles -3 calculate SIQR	-1 5 -2 $3 \cdot 5$ and 8 - ${ }^{3} \quad 2 \cdot 25$	3

Notes:

1. (a) Correct median without working
award ${ }^{1}$
(b) Correct SIQR without working, do not award \bullet^{2} or \bullet^{3}
2. Accept quartiles indicated in the list or on a diagram for \bullet^{2}
3. If 'correct' SIQR is found from an
(a) ordered list with one missing term or one extra number
award 2/3 $\times \checkmark \checkmark$
(b) unordered list $\left[Q_{2}=6, \operatorname{SIQR}=\frac{1}{2}(7-5 \cdot 5)=0 \cdot 75\right]$ award 1/3 $\times \times \checkmark$
4. \bullet^{2} and \bullet^{3} are not available for finding $\frac{1}{2}$ of the range ie $\frac{10-3}{2}=3 \cdot 5$

Commonly observed responses:
1.(a) $\mathrm{Q}_{2}=5, \mathrm{Q}_{1}=4, \mathrm{Q}_{3}=7 ; \operatorname{SIQR}=\frac{1}{2}(7-4)=1.5$ or $\frac{3}{2}$
award 2/3 $\checkmark \times \checkmark$
(b) $\mathrm{Q}_{2}=5 ; \mathrm{SIQR}=\frac{1}{2}(7-4)=1 \cdot 5$ award 1/3 $\checkmark \times x$

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 5. | (b) | \bullet^{4} valid comment comparing
 medians
 $\bullet .5$
 valid comment comparing SIQRs | \bullet^{4} eg On average, temperatures in
 Grantford are lower. | $\mathbf{2}$ |
| \bullet^{5} eg Temperatures in Grantford are | | | | |
| less consistent. | | | | |\quad.

Notes:

1. Answers must be consistent with answers to part (a).
eg If in part (a) the calculated median is 8 then award \bullet^{4} for 'on average the temperature is the same in both places' or equivalent.
If in part (a) the calculated SIQR is 1.5 then award \bullet^{5} for 'the spread of temperatures is the same in both places' or equivalent.
2. Comments must refer to Grantford and/or Endoch
(a) Accept eg On average the temperature in Endoch is higher and more consistent
(b) Do not accept eg On average the temperature is higher and more consistent
3. For the award of \bullet^{4}
(a) Accept eg

- On average Grantford is colder
- In general Endoch is warmer
(b) Do not accept eg
- The median temperature in Grantford is less
- The temperature in Endoch is more (this implies that all temperatures are more)
- On average Endoch's temperature is better

4. For the award of \bullet^{5}
(a) Accept eg

- The spread of temperatures is more in Grantford
- The temperatures in Endoch are less varied
(b) Do not accept eg
- Grantford's SIQR is more
- The range of Endoch's temperatures is less
- On average the temperatures in Grantford are more varied
- The SIQR of Grantford's temperatures is less consistent

Commonly observed responses:

	uesti	Generic scheme	Illustrative scheme	Max mark
6.	(a)	Method 1 -1 use points $(1 \cdot 5,14)$ and $(3 \cdot 5,8)$ to find gradient -2 substitute gradient and a point into $y-b=m(x-a)$ -3 state equation in terms of F and E in simplest form (remove any brackets and collect constants) Method 2 - ${ }^{1}$ use points $(1 \cdot 5,14)$ and $(3 \cdot 5,8)$ to find gradient - ${ }^{2}$ substitute gradient and a point into $y=m x+c$ - ${ }^{3}$ state equation in terms of F and E in simplest form	- $1-\frac{6}{2}$ or equivalent -2 eg $y-8=-\frac{6}{2}(x-3 \cdot 5)$ - ${ }^{3}$ eg $F=-3 E+18 \cdot 5$ - $1 \quad-\frac{6}{2}$ or equivalent - 2 eg $8=-\frac{6}{2} \times 3 \cdot 5+c$ - ${ }^{3}$ eg $F=-3 E+18 \cdot 5$	3

Notes:

1. Correct answer without working award 0/3
2. \bullet^{1} is not available for using points other than $(1 \cdot 5,14)$ and $(3 \cdot 5,8)$ to find the gradient
3. Gradient need not be simplified for the award of \bullet^{2}

Commonly observed responses:

Working must be shown.

1. $y=-3 x+18 \cdot 5$
award $2 / 3 \checkmark \checkmark x$
2. $y=-3 x$
award $1 / 3 \checkmark x x$
3. $F=-\frac{3}{1} E+18 \cdot 5 \quad$ award $2 / 3 \vee \vee x$
4. $m=\frac{16-7}{1-4}=-3 \rightarrow y-7=-3(x-4) \rightarrow F=-3 E+19 \quad$ award $2 / 3 \times \checkmark \checkmark$
(b) $\quad 0 \quad \bullet$ calculate fuel consumption $\quad \bullet \bullet 15 \cdot 2(\mathrm{~km} / \mathrm{l}) \quad 1$

Notes:

1. Consistent answer without working award 1/1, but see Note 2.
2. •• is not available where an incorrect answer in (a) is followed through to give a negative value in (b).

Commonly observed responses:

Question	Generic scheme	Illustrative scheme	Max mark
7.	Method 1 - ${ }^{1}$ multiply by 2 -2 divide by h - ${ }^{3}$ subtract y Method 2 - ${ }^{1}$ multiply by 2 -2 expand bracket and subtract hy -3 divide by h	Method 1 -1 $2 A=h(x+y)$ - $\frac{2 A}{h}=x+y$ - ${ }^{3} \quad x=\frac{2 A}{h}-y$ Method 2 -1 $2 A=h(x+y)$ -2 $2 A-h y=h x$ - ${ }^{3} \quad x=\frac{2 A-h y}{h}$	3

Notes:

1. Correct answer without working award $0 / 3$
2. Apply Method 2 instructions in cases where bracket is expanded. Candidates may do \bullet^{2} followed by \bullet^{1}
3. BEWARE: check all steps in answer eg $A=\frac{1}{2} h x+h y \rightarrow \frac{1}{2} h x=A-h y \rightarrow h x=2 A-h y \rightarrow x=\frac{2 A-h y}{h} \quad$ award $1 / 3 \times \times \checkmark($ Method 2$)$
4. For subsequent incorrect working \bullet^{3} is not available
5. Where final answer includes \times or $\div \operatorname{sign}(\mathrm{s})$, the maximum award is $2 / 3$
6. Accept a final answer of $x=\frac{A 2-h y}{h}$ (working must be shown) as bad form award $3 / 3$

Commonly observed responses:

1. $x=\frac{2 a-h y}{h}$
award 3/3
2. $x=\frac{A}{\frac{1}{2} h}-y$
award $2 / 3 \times \checkmark \checkmark$
3. $x=\frac{A-\frac{1}{2} h y}{\frac{1}{2} h}$

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 8. | (a) | \bullet^{1} construct equation | $\bullet^{1} \mathrm{eg} 7 c+3 g=215$ | $\mathbf{1}$ |

Notes:

1. Accept $7 c+3 g=215 \mathrm{~kg}$ as bad form

	(b)		$\bullet 2$ construct equation	\bullet^{2} eg $5 c+4 g=200$	$\mathbf{1}$

Notes:

1. Accept $5 c+4 g=200 \mathrm{~kg}$ as bad form

(c)	\bullet^{3} correct scaling - ${ }^{4}$ value for c or g - ${ }^{5}$ value for g or c - ${ }^{6}$ communicate answer in kilograms	$\cdot{ }^{3}$ eg $28 c+12 g=860$ $15 c+12 g=600$ or $35 c+15 g=1075$ $35 c+28 g=1400$ - ${ }^{4} c=20$ or $g=25$ - $5 \quad g=25$ or $c=20$ ${ }^{6}$ cement $=20 \mathrm{~kg}$, gravel $=25 \mathrm{~kg}$	4

Notes:

1. Correct answer without working
2. For a solution obtained by guess and check
award 0/4
award 0/4
3. \bullet^{6} is not available if either c or g is negative
4. \bullet^{6} is only available where a candidate calculates values for c and g, and a conclusion containing the words 'cement' and 'gravel' along with the correct units in both cases

Commonly observed responses:

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 9. | (a) | \bullet^{1} state equation of axis of
 symmetry | $\bullet^{1} x=4$ | 1 |

Notes:

1. For an answer of 4 or axis of symmetry $=4$
award 0/1

(b)	(i)	\bullet state the value of a	$\bullet{ }^{2}-4$

Notes:
\square
\square -3 state the value of b

Notes:

1. For an answer of $y=20-(x-4)^{2}$ award $1 / 1$ for (i) and $1 / 1$ for (ii)
2. For answers of (i) 20 and (ii) -4 award $0 / 1$ for (i) and $1 / 1$ for (ii)

This note only applies where the "correct" answers have been switched
3. Mark (b) independently from (a)

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 10. | (a) | $\bullet \bullet^{1}$ correct answer | $\bullet^{1}\binom{5}{4}$ | 1 |

Notes:

1. Award $0 / 1$ where:
(a) brackets are omitted from the answer
(b) the answer is given in coordinate form
2. (a) Treat $\left(\frac{5}{4}\right)$ as bad form award $1 / 1$
(b) However, for $\frac{5}{4} \quad$ award $0 / 1$

Commonly observed responses:

Questi	Generic scheme	Illustrative scheme	Max mark
(b)	-2 valid pathway ${ }^{3}$ consistent components	$\begin{aligned} & \bullet^{2} \frac{1}{2} \overrightarrow{\mathrm{PR}}+\overrightarrow{\mathrm{RQ}} \text { or } \frac{1}{2}\binom{6}{-4}+\binom{-1}{8} \\ & \text { OR } \frac{1}{2} \overrightarrow{\mathrm{RP}}+\overrightarrow{\mathrm{PQ}} \text { or } \frac{1}{2}\binom{-6}{4}+\binom{5}{4} \\ & \cdot \bullet^{3}\binom{2}{6} \end{aligned}$	2

Notes:

1. Correct answer without working award 2/2
2. Do not penalise the omission of brackets or giving the answer in coordinate form if this has already been penalised in part (a)
3. $\overrightarrow{\mathrm{MR}}+\overrightarrow{\mathrm{RQ}}$ or $\overrightarrow{\mathrm{MP}}+\overrightarrow{\mathrm{PQ}}$ alone is not enough for the award of \bullet^{2}
4. If candidate's response for (a) is $\overrightarrow{P R}-\overrightarrow{R Q}=\binom{6}{-4}-\binom{-1}{8}=\binom{7}{-12}$ then accept
(a) $\left[\frac{1}{2} \overrightarrow{\mathrm{PR}}-\overrightarrow{\mathrm{RQ}}=\right] \frac{1}{2}\binom{6}{-4}-\binom{-1}{8}=\binom{4}{-10}$
award 2/2
(b) $\left[\frac{1}{2} \overrightarrow{\mathrm{RP}}+\overrightarrow{\mathrm{PQ}}=\right] \frac{1}{2}\binom{-6}{4}+\binom{7}{-12}=\binom{4}{-10}$
award 2/2
(c) $\left[\frac{1}{2} \overrightarrow{\mathrm{RP}}-\overrightarrow{\mathrm{PQ}}=\right] \frac{1}{2}\binom{-6}{4}-\binom{7}{-12}=\binom{-10}{14}$
award 2/2
5. Where there is invalid subsequent working \bullet^{3} is not available
$\operatorname{eg}\binom{2}{6}=\binom{1}{3}$
award $1 / 2 \checkmark x$

Commonly observed responses:

1. (a) $\frac{1}{2}\binom{6}{-4}+\binom{-1}{8}=\binom{3}{-4}+\binom{-1}{8}=\binom{2}{4}$
(b) $\binom{3}{-4}+\binom{-1}{8}=\binom{2}{4}$
award $1 / 2 \checkmark x$
award 0/2

Notes:

1. Correct answer without relevant working award 0/3.
2. Degrees signs are not required.
3. \bullet^{2} is only available where angle $A O B$ is acute.
4. Full marks may be awarded for information marked on the diagram.
5. Do not penalise a candidate who marks the correct answer on the diagram but then writes an incorrect answer outwith the diagram.
6. Accept clear working outwith the diagram, but the final answer must be clearly indicated.
7. An answer of $360 \div 5=72$ alone is not enough for the award of \bullet. .
8. Alternative method
eg • ${ }^{1} \mathrm{EAB}=108$ (interior angle of pentagon)
$\bullet^{2} A B O=54 \quad(O A B=A B O)$
$\bullet^{3} \mathrm{OFB}=36 \quad(\mathrm{OBF}=90-\mathrm{ABO} ; \mathrm{OFB}=\mathrm{OBF})$
Commonly observed responses:
9. (a) $\mathrm{AOB}=60 \rightarrow \mathrm{FOB}=120 \rightarrow \mathrm{OFB}=30$
(b) $\quad \mathrm{FOB}=120 \rightarrow \mathrm{OFB}=30$
award $2 / 3 \times \checkmark \checkmark$
(c) $\mathrm{AOB}=90 \rightarrow \mathrm{FOB}=90 \rightarrow \mathrm{OFB}=45$
award $1 / 3 \times \times \checkmark$

Notes:

1. Correct answer with no working
2. For subsequent incorrect working \bullet^{3} is not available eg $\frac{\sqrt{5}}{10}=\frac{1}{2}$
3. Method 2: Accept $\frac{1 \sqrt{2}}{2 \sqrt{10}}$ for the award of \bullet^{1}
4. Candidates may use a mixture of methods
eg (a) Method 2 then Method 3: $\frac{\sqrt{2}}{2 \sqrt{10}}=\frac{1}{2 \sqrt{5}}=\frac{\sqrt{5}}{10}$
(b) Method 3 then Method 2: $\frac{1}{\sqrt{20}}=\frac{\sqrt{20}}{20}=\frac{\sqrt{5}}{10}$

Commonly observed responses:

Question		Generic scheme	Illustrative scheme	Max mark
13.		$\bullet 1$ \bullet^{1} state x-coordinate \bullet^{2} state y-coordinate $\bullet^{1}(135, \ldots)$ $\mathbf{2}$		

Notes:

1. For $x=135, y=-3$
award 2/2
2. Award $1 / 2$ where brackets are omitted unless
(a) answer in form shown in Note 1 above
(b) omission of brackets has already been penalised in Q10
(c) For $(-3,135)$
award 1/2
Commonly observed responses:

	uestion	Generic scheme	Illustrative scheme	Max mark
14.		Method 1 - ${ }^{1}$ eliminate denominators -2 rearrange into form $a x=b$ - ${ }^{3}$ solve for x Method 2 - ${ }^{1}$ collect algebraic terms and express as a fraction in simplest form -2 rearrange into form $a x=b$ - ${ }^{3}$ solve for x	Method 1 - $5 x-10=6-2 x$ or equivalent - ${ }^{2} 7 x=16$ - ${ }^{3} \quad x=\frac{16}{7}$ Method 2 -1 $\frac{7 x-6}{10}=1$ or equivalent - ${ }^{2} 7 x=16$ - ${ }^{3} \quad x=\frac{16}{7}$	3

Notes:

1. Correct answer without working
award 0/3
2. Accept $5 x-10=2(3-x)$ for the award of \bullet^{1}
3. For the award of \bullet^{3} the answer must be a non-integer value
4. Do not award \bullet^{3} for a decimal approximation to $\frac{16}{7}$, but do not penalise incorrect conversion to a mixed number or decimal approximation following an answer of $\frac{16}{7}$

Commonly observed responses:

1. $5 x-1=6-2 x \rightarrow 7 x=7 \rightarrow x=1$

Question		Generic scheme	Illustrative scheme	Max mark
15.	(a)	- ${ }^{1}$ calculate height	-1 $\left(12 \times 2-5 \times 2^{2}=\right) 4(m)$	1
	(b)	- ${ }^{2}$ construct equation - ${ }^{3}$ rearrange and equate to zero - ${ }^{4}$ consistent factorisation - 5 solve equation and select correct value	-2 $12 t-5 t^{2}=-17$ - ${ }^{3}$ eg $5 t^{2}-12 t-17=0$ - ${ }^{4}(5 t-17)(t+1)(=0)$ - ${ }^{5}(t=) \frac{17}{5}$ (seconds) or equivalent	4

Notes:

1. Correct answer without working
2. For a solution obtained by guess and check
award 0/4
award 0/4
3. \bullet^{3} is available for eg $12 t-5 t^{2}+17=0$
4. Do not penalise incorrect conversion of answer to a decimal or mixed number
5. $\cdot{ }^{4}$ is available for eg $\frac{12 \pm \sqrt{(-12)^{2}-4 \times 5 \times(-17)}}{2 \times 5}$
6. Where candidate finds two positive roots or two negative roots, then ${ }^{5}$ is not available

Commonly observed responses:

1. $12 t-5 t^{2}=17$
$x_{0}{ }^{2}$
$5 t^{2}-12 t+17=0$
$\checkmark{ }^{3}$
$(5 t-17)(t+1)=0$
$x{ }^{4}$
$t=\frac{17}{5},-1$
$t=\frac{17}{5}$
$\checkmark{ }^{5}$
[END OF MARKING INSTRUCTIONS]

2019 Mathematics

National 5 - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the

$$
x^{2}+5 x+7=9 x+4
$$

doubt and all marks awarded.
(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \cdot{ }^{5} & \bullet 6 \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

	Question	Generic scheme	Illustrative scheme	Max mark
1.		- ${ }^{1}$ know how to increase by 15% - ${ }^{2}$ know how to calculate number of packages after 3 years -3 evaluate	- ${ }^{1} \times 1 \cdot 15$ $\bullet^{2} \quad 80000 \times 1 \cdot 15^{3}$ -3 121670	3

Notes:

1. Correct answer without working
award 3/3
2. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding $2 / 3$
eg $80000 \times 0 \cdot 15^{3}=270$
award $2 / 3 \times \checkmark \checkmark$
3. Where an incorrect power (≥ 2) is used, the working must be followed through to give the possibility of awarding $2 / 3$
eg $80000 \times 1 \cdot 15^{2}=105800,80000 \times 1 \cdot 15^{4}=139920(\cdot 5)$ or $139921 \quad$ award $2 / 3 \checkmark \times \checkmark$
4. Where division is used
(a) along with $1 \cdot 15, \bullet^{1}$ is not available eg $80000 \div 1 \cdot 15^{3}=52601(\cdot 2 \ldots) \quad$ award $2 / 3 \times \checkmark \checkmark$
(b) along with an incorrect percentage, \bullet^{1} and \bullet^{2} are not available eg $80000 \div 0 \cdot 85^{3}=130266(\cdot 6 \ldots)$ or 130266 award $1 / 3 \times \times \checkmark$

Commonly observed responses:

1. $80000 \times 1 \cdot 015^{3}=83654(\cdot 27)$
award 2/3 $\times \checkmark \checkmark$
2. $80000 \times 0 \cdot 85^{3}=49130$
award $2 / 3 \times \checkmark \checkmark$
3. $80000 \times 1 \cdot 15=92000$
award 1/3 $\checkmark x x$
4. $80000 \times 1 \cdot 15 \times 3=276000$
award $1 / 3 \checkmark x x$
5. $80000 \times 0 \cdot 15=12000 \rightarrow 80000+3 \times 12000=116000$
award $1 / 3 \checkmark x x$
6. $80000 \times 0 \cdot 15 \times 3=36000$
award 0/3

	Generic scheme	Illustrative scheme	Max mark
2.	- ${ }^{1}$ start process - ${ }^{2}$ consistent solution	- $6^{2}+27^{2}+(-18)^{2}$ $\bullet^{2} \quad 33$	2

Notes:

1. Correct answer without working,
award 2/2
2. Accept $6^{2}+27^{2}+18^{2}$ for the award of \bullet^{1}
3. For a solution of $21\left(\sqrt{6^{2}+27^{2}-18^{2}}\right)$, with or without working, award $1 / 2$
4. For eg $\sqrt{6^{2}+(-18)^{2}}=\sqrt{360}=18 \cdot 97 \ldots$ or $6 \sqrt{10} \quad$ award $0 / 2$
5. For eg $\frac{\sqrt{6^{2}+27^{2}+(-18)^{2}}}{2 \times 6 \times 27}=\frac{33}{324}=\frac{11}{108}=0 \cdot 1 \ldots$
award 0/2

Commonly Observed Responses:

No working necessary

1. $\sqrt{1089}$ or 1089
award $1 / 2 \checkmark x$

| 3. | \bullet correct substitution into area of
 triangle formula
 $\bullet 2$ \bullet calculate area | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- |

Notes:

1. Correct answer without working
2. For $45 \times 70 \times \sin 129=2448(\cdot 0 \ldots)$
3. Inappropriate use of RAD or GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19
(a) $\pm 304 \cdot 7 \ldots$ (RAD) [no working necessary]
(b) 1414.3... (GRAD) [no working necessary]
4. Where cosine rule is used

Commonly observed responses:

1. $\frac{1}{2} \times 45 \times 70 \times \sin 129=\sqrt{1224 \cdot \ldots}=34 \cdot 9 \ldots$

Question		Generic scheme	Illustrative scheme	Max mark
4.		\bullet^{1} correct method	$\bullet^{1} 0 \cdot 08 \times 3.6 \times 10^{-6}$ or equivalent	2
\bullet^{2} answer	$\bullet^{2} 2 \cdot 88 \times 10^{-7}(\mathrm{~kg})$			

Notes:

1. Correct answer without working
2. Accept $2 \cdot 9 \times 10^{-7}$ (no working necessary)
3. Accept $100 \%=3 \cdot 6 \times 10^{-6} \rightarrow 1 \%=\ldots \rightarrow 8 \%=\ldots$ for the award of \bullet^{1}
4. For 0.000000288 or $\frac{9}{31250000}$ (no working necessary)
5. For $(0.08 \times 3.6=0.288 \rightarrow) 0.288 \times 10^{-6}$ (no working necessary) award $1 / 2 \checkmark x$
6. \bullet^{2} is available for correctly carrying out calculation(s) involving a number expressed in scientific notation and a change in the power of 10 ; the answer must be given in scientific notation.

Commonly observed responses:

1. $0.08 \times 3.6 \times 10^{-6}=2.8 \times 10^{-7}$
2. $0 \cdot 08 \times 3600000=2 \cdot 88 \times 10^{5}$
3. $3.6 \times 10^{-6} \div 8=4.5 \times 10^{-7}$
award $1 / 2 \times \checkmark$
4.(a) $3.6 \times 10^{-6} \div 8 \%=4.5 \times 10^{-5}$
(b) $3.6 \times 10^{-6} \div 8 \%=4.5 \times 10^{-7}$
award $1 / 2 \times \checkmark$
award 0/2

| Question | | Generic Scheme | Illustrative Scheme | Max
 Mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 5. | | $\bullet 1$
 \bullet^{2} state coordinates of A $\bullet^{1}(3,0,0)$
 2 | | |

Notes:

1. The maximum mark available is $1 / 2$ where brackets are omitted and/or answers are given in component form
See COR 1.
2. (a) For $(3,0,0)$ and $(3,3,8)$
award 2/2
(b) For $B(3,0,0)$ and $A(3,3,8)$
3. For eg $(0,0,3)$ and $(8,3,3)$ [repeated error]
award 1/2
award 1/2
4. \bullet^{2} is available for answers of the form $\mathrm{A}(x, 0,0) \rightarrow \mathrm{B}(x, x, 8)$

See COR 2.
5. Answer(s) given in two dimensions
(a) Where both answers are given in 2D award 0/2
(b) Where one answer is given in 2D and one in 3D
(i) award $1 / 2$ for the correct answer
eg $(3,0)$ and $(3,3,8)$
award 1/2
(ii)follow through mark is not available
eg $(6,0)$ and $(6,6,8)$
award 0/2

Commonly observed responses:

1. (a) $\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 3 \\ 8\end{array}\right)$ award $1 / 2 \times \checkmark$
$3 \quad 3$
(b) 0 and 3 award $1 / 2 \times \checkmark$
2. (a) $(6,0,0)$ and $(6,6,8)$ award $1 / 2 \times \checkmark$
(b) $(6,0,0)$ and $(6,3,8)$
award 0/2

Notes:

1. Correct answer without working
award 0/3
2. \bullet^{3} is only available when $b^{2}-4 a c>0$, and the roots require rounding.

Commonly observed responses:

1. $105\left(b^{2}-4 a c\right)$
award 1/3 $x \checkmark x$
2. $\frac{-9 \pm \sqrt{9^{2}-4 \times 3 \times(-2)}}{2 \times 3}=\frac{-9 \pm \sqrt{57}}{6}=-2 \cdot 8,-0 \cdot 2$
award $2 / 3 \checkmark x \checkmark$
3. $\frac{-9 \pm \sqrt{9^{2}-4 \times 3 \times 2}}{2 \times 3}=\frac{-9 \pm \sqrt{57}}{6}=-2 \cdot 8,-0 \cdot 2$ award $1 / 3 \times x \checkmark$
4. $\frac{-9 \pm \sqrt{9^{2}-4 \times 3 \times(-2)}}{2 \times 3}=\frac{-9 \pm \sqrt{105}}{6}=-10 \cdot 7,-7 \cdot 3$ award $2 / 3 \checkmark \checkmark x$
5. $-9 \frac{ \pm \sqrt{9^{2}-4 \times 3 \times(-2)}}{2 \times 3}=-9 \frac{ \pm \sqrt{105}}{6}=-10 \cdot 7,-7 \cdot 3$
award $2 / 3 \times \checkmark \checkmark$

Notes:

1. Correct answer without working award $0 / 3$
2. Where two or three more angles are calculated correctly
(a) all three angles are calculated correctly; 46.4 need not be identified
award 3/3
(b) two angles are calculated correctly and 46.4 has been clearly identified
award 3/3
(c) two angles are calculated correctly and 46.4 has NOT been clearly identified award $2 / 3 \checkmark \checkmark x$
3. Do not penalise omission of degrees sign
4. Disregard errors due to premature rounding provided there is evidence
5. Inappropriate use of RAD or GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19
(a) $0.81 \ldots$ (RAD)
(b) $51.56 \ldots$ (GRAD)

Commonly observed responses:

1. $\frac{8 \cdot 5^{2}+6 \cdot 3^{2}-7 \cdot 2^{2}}{2 \times 8 \cdot 5 \times 6 \cdot 3}\left(=\frac{60 \cdot 1}{107 \cdot 1}=\frac{601}{1071}=0 \cdot 561 \ldots\right) \rightarrow 55 \cdot 86 \ldots$
award $2 / 3 \times \checkmark \checkmark$
2. $\frac{7 \cdot 2^{2}+6 \cdot 3^{2}-8 \cdot 5^{2}}{2 \times 7 \cdot 2 \times 6 \cdot 3}\left(=\frac{19 \cdot 28}{90 \cdot 72}=\frac{241}{1134}=0 \cdot 212 \ldots\right) \rightarrow 77 \cdot 72 \ldots$
award $2 / 3 \times \checkmark \checkmark$
3. $(\cos Z=) \frac{7 \cdot 2^{2}+8 \cdot 5^{2}-6 \cdot 3^{2}}{2 \times 7 \cdot 2 \times 8 \cdot 5}=\sqrt{0 \cdot 689 \ldots} \rightarrow Z=33 \cdot 8 \ldots$
award $2 / 3 \checkmark x \checkmark$

Notes:

1. Correct answer without working
award 0/5
2. Accept 29900 ml or 29.9 litres
3. Accept variations in π
eg $\frac{1}{2} \times \frac{4}{3} \times 3 \cdot 14 \times 12^{3}+3 \cdot 14 \times 12^{2} \times 58=29842 \cdot 56=29800 \mathrm{~cm}^{3}$
4. \bullet^{5} is not available if final answer is given in terms of π
eg $\frac{2}{3} \times \pi \times 12^{3}+\pi \times 12^{2} \times 58=1152 \pi+8352 \pi=9504 \pi \mathrm{~cm}^{3}$
award 4/5 $\checkmark \checkmark \checkmark \checkmark x$
5. In awarding • ${ }^{5}$
(a) Intermediate calculations need not be shown

$$
\text { eg } \frac{1}{2} \times \frac{4}{3} \times \pi \times 12^{3}+\pi \times 12^{2} \times 58=29900 \mathrm{~cm}^{3}
$$

award 5/5
(b) Where intermediate calculations are shown, they must involve at least four significant figures
eg $3619 \cdot 1 \ldots+26238 \cdot 5 \ldots=3620+26200=29820=29800 \mathrm{~cm}^{3}$
award $4 / 5 \checkmark \checkmark \checkmark \checkmark x$

Commonly observed responses:

1. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 24^{3}+\pi \times 24^{2} \times 58=134000 \mathrm{~cm}^{3}$ award 4/5 $\times \checkmark \checkmark \checkmark \checkmark$
2. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 24^{2}+\pi \times 24^{2} \times 58=106000 \mathrm{~cm}^{3}$ award 4/5 $\times \checkmark \checkmark \checkmark \checkmark$
3. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12^{3}+\pi \times 12^{2} \times 70=35300 \mathrm{~cm}^{3}$
award 4/5 $\checkmark \times \checkmark \checkmark \checkmark$
4. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 24^{3}+\pi \times 24^{2} \times 70=156000 \mathrm{~cm}^{3}$
award 3/5 $\times x \checkmark \checkmark \checkmark$
5. $\frac{4}{3} \times \pi \times 12^{3}+\pi \times 12^{2} \times 58=33500 \mathrm{~cm}^{3}$ award 4/5 $\checkmark \checkmark \times \checkmark \checkmark$
6. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12^{3}+\pi \times 24 \times 58=7990 \mathrm{~cm}^{3}$
award $4 / 5 \checkmark \times \checkmark \checkmark \checkmark$
7. $\frac{4}{3} \times \pi \times 12^{3}=7240 \mathrm{~cm}^{3}$
award $2 / 5 \checkmark \times x \times \checkmark$
8. $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12^{3}=3620 \mathrm{~cm}^{3}$
award $2 / 5 \checkmark x \times x \checkmark$
9. $\pi \times 12^{2} \times 58=26200 \mathrm{~cm}^{3}$
award $2 / 5 \times v \times \times \checkmark$

Notes:

1. Correct answer without working award $3 / 3$
2. $2 \cdot 5 \%$ of $977 \cdot 85=24 \cdot 45$
(a) and evidence of \bullet^{1}
award $1 / 3 \checkmark x x$
(b) otherwise
award 0/3
3. $97 \cdot 5 \%$ of $977 \cdot 85=953 \cdot 40$
(a) and evidence of \bullet^{1}
(b) otherwise
award $1 / 3 \checkmark \times x$
ommonly observed responses:
4. $\frac{977 \cdot 85}{1 \cdot 025}=954$
award $2 / 3 \checkmark \checkmark x$
5. (a) $97 \cdot 5 \%=977 \cdot 85 \rightarrow \frac{977 \cdot 85}{0.975}=1002 \cdot 92$
award 1/3 $x \checkmark x$
(b) $\frac{977 \cdot 85}{0.975}=1002 \cdot 92$
6. (a) $2 \cdot 5 \%=977 \cdot 85 \rightarrow \frac{977 \cdot 85}{0 \cdot 025}=39114$
award 1/3 $x \checkmark x$
(b) $\frac{977 \cdot 85}{0.025}=39114$
award 0/3

Question		Generic scheme	Illustrative scheme	Max mark
10.		\bullet^{1} correct bracket with square	$\bullet^{1}(x+5)^{2} \ldots$	2
\bullet^{2} complete process	$\bullet^{2}(x \ldots 5)^{2}-40$			

Notes:

1. Correct answer without working award 2/2
2. Answer for • ${ }^{2}$ must be consistent with • ${ }^{1}$
eg (a) $(x \pm 10)^{2}-115$
(b) $(x \pm 10)^{2}-40$
award $1 / 2 \times \checkmark$
award 0/2

Commonly observed responses:

No working necessary.

1. Award $2 / 2$ for (a) $(x+5)^{2}+(-40)$ or $(x+5)^{2}+-40$
(b) $(x+5)(x+5)-40$
2. Award $1 / 2 \times \checkmark$ for (a) $(x \pm 5)-40$
(b) $\left(x^{2} \pm 5\right)-40$
(c) $\left(x^{2} \pm 5\right)^{2}-40$
(d) $(x \pm 5 x)^{2}-40$

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. For method 1 there must be an explicit comparison stated for the award of \bullet^{3}
2. The conclusion must include a reference to 90° or a right angle.
3. (a) Where candidate starts by stating that eg $650^{2}=600^{2}+250^{2}, \bullet^{1}$ and \bullet^{3} are not available $650^{2}=600^{2}+250^{2} \quad x \bullet^{1} \times \bullet^{3}$ (marks not available)
$422500=422500 \quad \checkmark \bullet^{2}$ (evaluation)
Yes, as it's right-angled $\checkmark \bullet^{4}$ (conclusion and reason) award $2 / 4 \times \checkmark \times \checkmark$
(b) Where candidate starts by stating that eg If triangle is right-angled then $650^{2}=600^{2}+250^{2}$
\bullet^{3} is not available
If triangle is right-angled then $650^{2}=600^{2}+250^{2} \quad \checkmark \bullet^{1} \times \bullet^{3}\left(\bullet^{3}\right.$ not available)
$422500=422500 \quad \checkmark_{\bullet}{ }^{2}$ (evaluation)
Yes $\quad \checkmark \bullet^{4}$ (conclusion; reason implicit in $\checkmark \bullet^{1}$) award 3/4 $\checkmark \checkmark \times \checkmark$
4. (a) Where there is no working to indicate how 250 has been obtained, then assume it has been obtained using the perimeter.
(b) Where working shows that 250 has been obtained by the use of Pythagoras' theorem, \bullet^{1} is not available; apply the MIs for the award of \bullet^{2}, \bullet^{3} and \bullet^{4}
5. Inappropriate use of RAD or GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19
(a) 1.57... (RAD), no, angle is not a right angle
(b) 100 (GRAD), no, angle is not a right angle

Commonly observed responses:

1. Variation on Method 1: award 4/4
eg $600^{2}+250^{2}=422500$
$\sqrt{422500}=650$
$600^{2}+250^{2}=650^{2}$
Yes, as angle is a right angle
2. $(\cos \mathrm{A}=) \frac{600^{2}+650^{2}-250^{2}}{2 \times 600 \times 650}=\frac{12}{13} \rightarrow \mathrm{~A}=22 \cdot 6 \ldots$
award 2/4 $\times \checkmark \checkmark \times$
3. If triangle is right-angled then $B C^{2}=650^{2}-600^{2} \quad \checkmark \bullet^{1}$
$B C=250 \quad \checkmark_{\bullet}^{2}$ (evaluation)
$1500-650-600=250=B C \quad \quad \checkmark \bullet^{3}$ (explicit comparison of BC obtained from Pythagoras' with BC obtained from perimeter)
Yes
$\checkmark \bullet^{4}$ (conclusion; reason implicit in $\checkmark \bullet^{1}$) award 4/4
4. $\mathrm{BC}^{2}=650^{2}-600^{2} \quad \mathrm{x} \bullet^{1}$ (mark not available)
$B C=250 \quad \checkmark \bullet^{2}$ (evaluation)
$1500-650-600=250=B C \quad \quad \bullet^{3}$ (explicit comparison of BC obtained from Pythagoras' with BC obtained from perimeter)
Yes, as angle is a right angle
$\checkmark \cdot{ }^{4}$ (conclusion and reason) award 3/4 $\times \checkmark \checkmark \checkmark$

	uest	Generic scheme	Illustrative scheme	Max mark
12.	(a)	Method 1 - ${ }^{1}$ linear scale factor -2 know to multiply area by square of linear scale factor -3 find area of smaller sector (calculation must include a power of the linear scale factor) Method 2 - ${ }^{1}$ linear scale factor -2 know to divide area by square of linear scale factor -3 find area of smaller sector (calculation must include a power of the linear scale factor) Method 3 [Combination of (b) and (a)] $\bullet{ }^{4} \cdot{ }^{5}{ }^{6}$ calculate size of angle ACB (see part (b) below) -1 appropriate fraction -2 consistent substitution into area of sector formula - calculate area of smaller sector	-1 $\frac{30}{50}$ - $2750 \times\left(\frac{30}{50}\right)^{2}$ - ${ }^{3} 990\left(\mathrm{~cm}^{2}\right)$ -1 $\frac{50}{30}$ - $2750 \div\left(\frac{50}{30}\right)^{2}$ - ${ }^{3} 990\left(\mathrm{~cm}^{2}\right)$ $\bullet{ }^{4} \cdot{ }^{5} 0^{6} \quad 126(\cdot 05 \ldots)$ -1 $\frac{126(\cdot 05 \ldots)}{360}$ - $\frac{126(\cdot 05 \ldots)}{360} \times \pi \times 30^{2}$ - ${ }^{3} 990\left(\mathrm{~cm}^{2}\right)$	3

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. Correct answer without working
award 0/3.
2. $\cdot{ }^{3}$ is not available where there is invalid subsequent working eg $2750-990=1760$
award $2 / 3 \checkmark \checkmark x$
3. Method 3: Accept $\frac{126}{360} \times \pi \times 30^{2}=989 \cdot 6(0 \ldots)$

Commonly observed responses:

1. $2750 \times \frac{30}{50}=1650$
award $1 / 3 \checkmark x x$
2. $2750 \times\left(\frac{30}{50}\right)^{3}=594$
award $2 / 3 \checkmark x \checkmark$
3. $2750^{2} \times \frac{30}{50}=4537500$
award $1 / 3 \checkmark x x$
4. $2750 \times\left(\frac{50}{30}\right)^{2}=7638(\cdot 8 \ldots)$ or 7639
award $2 / 3 \checkmark x \checkmark$
5. $2750 \times\left(\frac{50}{30}\right)^{2}=2750 \times 1 \cdot 67^{2}=7669(\cdot 4 \ldots)$
award $1 / 3 \checkmark x x$
(Premature rounding leads to inaccurate answer)
6. $2750 \div\left(\frac{50}{30}\right)^{2}=2750 \div 1 \cdot 67^{2}=986(\cdot 0 \ldots)$
award $2 / 3 \checkmark \checkmark x$
(Premature rounding leads to inaccurate answer)

	est	Generic scheme	Illustrative scheme	Max mark
12.	(b)	Method 1 - ${ }^{4}$ expression for sector area - ${ }^{5}$ know how to find angle -6 calculate angle Method 2 - ${ }^{4}$ sector area: circle area ratio - ${ }^{5}$ know how to find angle - ${ }^{6}$ calculate angle	- $\frac{\text { angle }}{360} \times \pi \times 50^{2}$ $\cdot{ }^{5} \frac{2750 \times 360}{\pi \times 50^{2}}$ - 6 126(.05...) - $\frac{2750}{\pi \times 50^{2}} \quad(=0.35 \ldots)$. $5 \frac{2750 \times 360}{\pi \times 50^{2}}$ -6 126(.05...)	3

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. Correct answer without working award $0 / 3$
2. Alternative Method 1: $\frac{\text { angle }}{360} \times \pi \times 30^{2} \rightarrow \frac{990 \times 360}{\pi \times 30^{2}}=126(\cdot 05 \ldots)$
3. Alternative Method 2: $\frac{990}{\pi \times 30^{2}} \rightarrow \frac{990 \times 360}{\pi \times 30^{2}}=126(\cdot 05 \ldots)$
4. Where any of the above alternative methods are used, an incorrect answer to part (a) must be followed through with possibility of awarding $3 / 3$ for part (b)
5. Accept variations in π
6. Premature rounding of $\frac{2750}{\pi \times 50^{2}}$ must be to at least 2 decimal places
7. For the award of ${ }^{6}$, the calculation must involve a division by a product.

The calculation must include a sector area, $\pi, 360$ and the candidate's chosen radius or diameter.

Commonly observed responses:

1. (a) $1650 \rightarrow$ (b) $\frac{1650 \times 360}{\pi \times 30^{2}}=210(.08 \ldots)$
award 3/3
2. (a) $1650 \rightarrow$ (b) $\frac{1650 \times 360}{\pi \times 50^{2}}=75(\cdot 63 \ldots)$
award $2 / 3 \times \checkmark \checkmark$
3. $\frac{2750 \times 360}{\pi \times 100^{2}}=31.5(1 \ldots)$
award 2/3 $\times \checkmark \checkmark$
4. $\frac{2750 \times 360}{\pi \times 100}=3151(\cdot 2 \ldots)$
award $2 / 3 \times \checkmark \checkmark$
5. $\frac{2750 \times 360}{\pi \times 100}=\sqrt{3151(\cdot 2 \ldots)}=56(\cdot 1 \ldots)$
award $1 / 3 \times \times \checkmark$
6. $\frac{2750}{360} \times \pi \times 50^{2}=59995(\cdot 6 \ldots)$
award 0/3

Notes:

1. Correct answer without working award 0/3.
2. Accept $p+\frac{3}{2}$ for \bullet^{3}
3. For subsequent incorrect working \bullet^{3} is not available
eg $\frac{\not \partial p+3}{2}=p+3$ award $2 / 3 \checkmark \checkmark x$

Commonly observed responses:

Notes:

1. Correct answer without working
award 0/3.
2. Accept (a) 102 and 258 (b) $101 \cdot 6$ (180-78.4) and $258 \cdot 4(180+78 \cdot 4)$ with valid working.
3. Do not penalise omission of degrees sign.
4. If $\cos x<0$ then \bullet^{2} and \bullet^{3} are only available for consistent $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant angles
eg $\cos x=-\frac{1}{5} \rightarrow$ (a) $78 \cdot 5,101 \cdot 5$
(b) $78 \cdot 5,258 \cdot 5$
(c) $78 \cdot 5,281 \cdot 5$
award $2 / 3 \checkmark \times \checkmark$
award $2 / 3 \checkmark \times \checkmark$
award $1 / 3 \checkmark x x$
5. If $\cos x>0$ then \bullet^{2} is not available (working eased) but \bullet^{3} is available for consistent 4th quadrant angle
eg $\cos x=\frac{1}{5} \rightarrow$ (a) $78 \cdot 5,101 \cdot 5$
award 0/3
(b) $78 \cdot 5,258 \cdot 5 \quad$ award $0 / 3$
(c) $78 \cdot 5,281 \cdot 5 \quad$ award $1 / 3 \times \times \checkmark$
(d) $101 \cdot 5,258 \cdot 5 \quad$ award $0 / 3$
6. If 78.5 is clearly included as one of the final answers then award marks as follows:
eg $\cos x=-\frac{1}{5} \rightarrow$
(a) $78 \cdot 5,101 \cdot 5,258 \cdot 5$
(b) $78.5,101 \cdot 5,281 \cdot 5$
(c) $78 \cdot 5,101 \cdot 5,258 \cdot 5,281 \cdot 5$
award $2 / 3 \checkmark \times v$
award $1 / 3 \checkmark x x$
award $1 / 3 \checkmark x x$
7. (a Inappropriate use of RAD should only be penalised once in Qu 3, 7, 11, 14 or 19

$$
\cos ^{-1}\left(\frac{1}{5}\right)=1 \cdot 3 \ldots \rightarrow 178 \cdot 6 \ldots, 181 \cdot 3 \ldots
$$

(b) However, for $\cos ^{-1}\left(-\frac{1}{5}\right)=1 \cdot 7 \ldots \rightarrow 1 \cdot 7 \ldots, 358 \cdot 3 \ldots$ award $1 / 3 \checkmark \times x$ since the answers are not $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant angles
8. Inappropriate use of GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19
(a) $\cos ^{-1}\left(\frac{1}{5}\right)=87 \cdot 1 \ldots \rightarrow 92 \cdot 8 \ldots, 267 \cdot 1 \ldots$
(b) $\cos ^{-1}\left(-\frac{1}{5}\right)=112 \cdot 8 \ldots \rightarrow 112 \cdot 8 \ldots, 247 \cdot 2 \ldots$

Commonly observed responses:

1. $\cos x=\frac{3}{5} \rightarrow 53 \cdot 1,306 \cdot 9 \quad$ award $1 / 3 \times \times \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
$\mathbf{1 5 .}$		\bullet^{1} correct denominator	$\bullet^{1}(x-2)(x+5)$	3
\bullet^{2} correct numerator	\bullet^{2}express in simplest form (remove brackets in numerator and collect like terms)	$\bullet^{3} \frac{x+26}{(x-2)(x+5)}$		

Notes:

1. Correct answer without working award $3 / 3$
2. Accept $\frac{4(x+5)}{(x-2)(x+5)}-\frac{3(x-2)}{(x-2)(x+5)}$ for the award of \bullet^{1} and \bullet^{2}
3. Do not accept $x-2(x+5)$ or $(x-2) x+5$ for the award of \bullet^{1} unless the correct expansion appears in the final answer
4. Where a candidate chooses to expand the brackets in the denominator, then \bullet^{3} is only available for a correct expansion eg
(a) $\frac{4(x+5)}{(x-2)(x+5)}-\frac{3(x-2)}{(x-2)(x+5)}=\frac{x+26}{x^{2}+3 x-10}$
award 3/3
(b) $\frac{4(x+5)}{(x-2)(x+5)}-\frac{3(x-2)}{(x-2)(x+5)}=\frac{x+26}{x^{2}-10}$
award $2 / 3 \checkmark \checkmark x$
(c) $\frac{4(x+5)}{x^{2}-10}-\frac{3(x-2)}{x^{2}-10}=\frac{x+26}{x^{2}-10}$
award 2/3 $\times \checkmark \checkmark$
5. For subsequent incorrect working, \bullet^{3} is not available eg $\frac{x+26}{x^{2}+3 x-10}=\frac{26}{x^{2}-7}$ award 2/3 $\checkmark \checkmark x$

Commonly observed responses:

1. $\frac{4 x+20}{(x-2)(x+5)}-\frac{3 x-6}{(x-2)(x+5)}=\frac{x+14}{(x-2)(x+5)}$
award 2/3 $\checkmark \checkmark x$
2. $\frac{4 x+5}{(x-2)(x+5)}-\frac{3 x-2}{(x-2)(x+5)}=\frac{x+7}{(x-2)(x+5)}$
award 1/3 $\checkmark x x$

Question		Generic scheme	Illustrative scheme	Max mark
16.		-1 apply $a^{m} \times k a^{n}=k a^{m+n}$ -2 evidence of $\sqrt{a}=a^{\frac{1}{2}}$ - ${ }^{3}$ complete simplification	- 1 eg $a^{4} \times 3 a=3 a^{5}$ - $a^{\frac{1}{2}}$ - $3 a^{\frac{9}{2}}$	3

Notes:

1. Correct answer without working award $3 / 3$.
2. Accept $3 a^{4 \frac{1}{2}}$ or $3 a^{4 \cdot 5}$ (as bad form).
3. (a) Accept $3 \sqrt{a^{9}}$.
(b) Do not penalise $3 a^{\frac{9}{2}}=3 \sqrt[9]{a^{2}}$.
4. Where candidate starts by rationalising the denominator, \bullet^{1} is available for eg (i) obtaining $3 a^{5}$ as follows: $\frac{a^{4} \times 3 a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}=\frac{3 a^{5} \times \sqrt{a}}{a}$
(ii) obtaining $3 a^{4}$ as follows: $\frac{a^{4} \times 3 a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}=3 a^{4} \times \sqrt{a}$ or $a^{4} \times 3 \sqrt{a}$
5. BEWARE \bullet^{1} is not available where $3 a^{5}$ has been obtained incorrectly eg $\frac{a^{4} \times 3 a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}=\frac{a^{4} \times 3 a \times \sqrt{a}}{a}=\frac{\sqrt{3 a^{5}}}{a}$

Commonly observed responses:

Notes:

1. Correct answer without working award 0/2
2. Do not penalise omission of degrees sign
3. Accept $1+\sin 2 x$
4. Accept $(\sin x)^{2}$ and $(\cos x)^{2}$ or $\sin x \sin x$ and $\cos x \cos x$
eg (a) $(\sin x)^{2}+2 \sin x \cos x+(\cos x)^{2}=1+2 \sin x \cos x$
(b) $\sin x \sin x+2 \sin x \cos x+\cos x \cos x=1+2 \sin x \cos x$
award 2/2
award 2/2
5. Do not accept $\sin x^{2}$ and $\cos x^{2}$.
eg $\sin x^{2}+2 \sin x \cos x+\cos x^{2}=1+2 \sin x \cos x$
award $1 / 2 \times \checkmark$
6. \bullet^{1} is not available if there are no variables
eg $\sin ^{2}+2 \sin \cos +\cos ^{2}=1+2 \sin \cos$
award $1 / 2 \times \checkmark$
7. \bullet^{2} is not available if there is invalid subsequent working
8. Alternative acceptable strategy:

- $1\left(\frac{o}{h}\right)^{2}+\left(\frac{o}{h}\right)\left(\frac{a}{h}\right)+\left(\frac{a}{h}\right)\left(\frac{o}{h}\right)+\left(\frac{a}{h}\right)^{2}$
$\bullet^{2}\left(\frac{o}{h}\right)^{2}+2\left(\frac{o}{h}\right)\left(\frac{a}{h}\right)+\left(\frac{a}{h}\right)^{2}=1+2 \sin x \cos x$
award 2/2

Commonly observed responses:

1. $(\sin x+\cos x)^{2}=\sin ^{2} x+\cos ^{2} x=1$
award 0/2
2. $(\sin x+\cos x)^{2}=\sin ^{2} x+\sin x \cos x+\cos ^{2} x=1+\sin x \cos x$ award $1 / 2 \times \checkmark$

Notes:

1. Correct answer without working
award 0/4.
2. In the absence of a diagram, or a diagram without right angle indicated, accept $7 \cdot 5^{2}+7 \cdot 5^{2}$ as evidence for the award of \bullet^{1} and \bullet^{2}.
3. BEWARE

Where a diagram is shown, working must be consistent with the diagram.
4. \bullet^{2} and \bullet^{3} are available for a valid trigonometric method.
5. \bullet^{3} is available for a consistent calculation of a length using Pythagoras or trigonometry
6. ${ }^{4}$ is only available following a Pythagoras (or trigonometric) calculation within a right-angled triangle involving $7 \cdot 5$ or 15.
7. Disregard errors due to premature rounding provided there is evidence.

Commonly observed responses:

1. [Triangle SBT with $\mathrm{SB}=\mathrm{ST}=15] r^{2}=15^{2}+15^{2} \rightarrow r=21 \cdot 2 \rightarrow \mathrm{CD}=51 \cdot 2$
(a) working inconsistent with correct diagram
(b) working consistent with candidate's diagram
(c) no diagram
award $3 / 4 \checkmark \times \checkmark \checkmark$ award 3/4 $\times \checkmark \checkmark \checkmark$ award 2/4 $\times \times \checkmark \checkmark$
2. [Square with side AB] $d^{2}=15^{2}+15^{2} \rightarrow r=10 \cdot 6 \rightarrow \mathrm{CD}=25 \cdot 6$

If consistent with a correct diagram award 4/4; otherwise apply COR 1 MIs
3. [Triangle ATB] $r^{2}+r^{2}=15^{2} \rightarrow r=10 \cdot 6 \rightarrow \mathrm{CD}=25.6$

Apply MIs and Note 2 becomes accept $r^{2}+r^{2}=15^{2}$ as evidence for the award of \bullet^{1} and \bullet^{2}

Question	Generic scheme	Illustrative scheme	Max mark

Notes:

1. Correct answer without working award 0/5.
2. Do not penalise omission of degrees signs.
3. Disregard errors due to premature rounding provided there is evidence.

However, do not accept $\sin 34$, $\sin 52$ or $\sin 94$ rounded to less than 3 decimal places.
eg $B M=\frac{350 \sin 52}{\sin 94}=\frac{275.8}{0.99}=275.59 \rightarrow h=275.59 \sin 34=155.8 \quad$ award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$
4. Where both $B K$ and $B M$ are calculated but one is calculated incorrectly, if there is
(a) further working then apply the MIs based on the length used to calculate the height
(b) no further working disregard incorrect length ie
award 3/5
5. Alternative strategy for \bullet^{4} and \bullet^{5}
eg $\bullet^{4} \quad \mathrm{~A}=\frac{1}{2} \times 350 \times 196(\cdot 195 \ldots) \times \sin 52(=27055 \cdots$. $)$

- $\frac{1}{2} \times 350 \times h=27055 \cdot \ldots \rightarrow h=154.6$

6. Inappropriate use of GRAD or RAD should only be penalised once in Qu 3, 7, 11, 14 or 19
(a) 130.4... (GRAD)
(b) $\pm 744 \cdot 9 \ldots$ (RAD); \bullet^{5} is not available due to the negative length. However, \bullet^{3} is available if use of RAD has already been penalised in Qu 3, 7, 11, 14 or 19

Commonly observed responses:

1. $\frac{x}{\sin 52}=\frac{350}{\sin 34} \rightarrow x=493(\ldots)$
award $2 / 5 \times \checkmark \checkmark \times x$
2. eg $\frac{\mathrm{BK}}{34}=\frac{350}{94} \rightarrow \mathrm{BK}=126(\cdot 59 \ldots) \rightarrow h=126(\cdot 59 \ldots) \times \sin 52=99(\cdot 75 \ldots) \quad$ award $2 / 5 \times \times \times \checkmark \checkmark$
